Bacterial Clearance Is Improved in Septic Mice by Platelet-Activating Factor-Acetylhydrolase (PAF-AH) Administration

نویسندگان

  • Mariana G. A. Teixeira-da-Cunha
  • Rachel N. Gomes
  • Nathassia Roehrs
  • Fernando A. Bozza
  • Stephen M. Prescott
  • Diana Stafforini
  • Guy A. Zimmerman
  • Patricia T. Bozza
  • Hugo C. Castro-Faria-Neto
چکیده

Current evidence indicates that dysregulation of the host inflammatory response to infectious agents is central to the mortality of patients with sepsis. Strategies to block inflammatory mediators such as PAF have been investigated as adjuvant therapies for sepsis. PAF-AH, the enzyme responsible for PAF degradation, showed positive results in pre-clinical studies and phase II clinical trials, but the results of a phase III study were disappointing. In this study, we investigated the potential protective mechanism of PAF-AH in sepsis using the murine model of cecal ligation and puncture (CLP). Treatment with rPAF-AH increased peritoneal fluid levels of the anti-inflammatory mediators MCP-1/CCL2 after CLP. The numbers of bacteria (CFU) in the peritoneal cavity were decreased in the rPAF-AH-treated group, indicating more efficient bacterial clearance after rPAF-AH treatment. Interestingly, we observed increased levels of nitric oxide (NO) after PAF-AH administration, and rPAF-AH treatment did not decrease CFU numbers either in iNOS-deficient mice or in CCR2-deficient mice. We concluded that administration of exogenous rPAF-AH reduced inflammatory injury, altered cytokine levels and favored bacterial clearance with a clear impact on mortality through modulation of MCP-1/CCL2 and NO levels in a clinically relevant sepsis model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased plasma non-esterified fatty acids and platelet-activating factor acetylhydrolase are associated with susceptibility to atherosclerosis in mice.

Animal models provide vital tools to explicate the pathogenesis of atherosclerosis. Accordingly, we established two atherosclerosis-prone mice models: (i) mice lacking the LDL (low-density lipoprotein) receptor (LDLR) and the ability to edit apo (apolipoprotein) B mRNA (Apobec1; designated LDb : LDLR-/- Apobec1-/-), and (ii) mice with the LDb background, who also overexpressed human apoB100 (de...

متن کامل

Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase prevents injury-induced neointima formation and reduces spontaneous atherosclerosis in apolipoprotein E-deficient mice.

BACKGROUND Atherosclerosis is characterized by an early inflammatory response involving proinflammatory mediators such as platelet-activating factor (PAF)-like phospholipids, which are inactivated by PAF-acetylhydrolase (PAF-AH). The effect of adenovirus-mediated expression of PAF-AH on injury-induced neointima formation and spontaneous atherosclerosis was studied in apolipoprotein E-deficient ...

متن کامل

Class A CpG Oligonucleotide Priming Rescues Mice from Septic Shock via Activation of Platelet-Activating Factor Acetylhydrolase

Sepsis is a life-threatening, overwhelming immune response to infection with high morbidity and mortality. Inflammatory response and blood clotting are caused by sepsis, which induces serious organ damage and death from shock. As a mechanism of pathogenesis, platelet-activating factor (PAF) induces excessive inflammatory responses and blood clotting. In this study, we demonstrate that a Class A...

متن کامل

Platelet-activating factor acetylhydrolase and transacetylase activities in human aorta and mammary artery*

Platelet-activating factor (PAF), the potent phospholipid mediator of inflammation, is involved in atherosclerosis. Platelet-activating factor-acetylhydrolase (PAF-AH), the enzyme that inactivates PAF bioactivity, possesses both acetylhydrolase and transacetylase activities. In the present study, we measured acetylhydrolase and transacetylase activities in human atherogenic aorta and nonatherog...

متن کامل

Circulating platelet-activating factor is primarily cleared by transport, not intravascular hydrolysis by lipoprotein-associated phospholipase A2/ PAF acetylhydrolase.

RATIONALE The phospholipid platelet-activating factor (PAF) stimulates all cells of the innate immune system and numerous cardiovascular cells. A single enzyme (plasma PAF acetylhydrolase [PAF-AH] or lipoprotein-associated phospholipase [Lp-PL]A(2)) in plasma hydrolyzes PAF, but significant controversy exists whether its action is pro- or antiinflammatory and accordingly whether its inhibition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013